
On Maxima and Minima *

Leonhard Euler

§250 If a function of x was of such a nature that, while the values of x
increase, the function itself increases or decreases continuously, then this
function will have no maximum or minimum value. For, whatever value of
this function is considered, the following value will be larger, the preceding
value on the other hand will be smaller. A function of this kind is x3 + x,
whose values for increasing x increase continuously, but for decreasing x
decrease continuously; therefore, this function cannot have a maximum value,
if not the maximum point, i.e. infinity, is attributed to x; and in like manner,
it will have the minimum value, if one puts x = −∞. But if the function was
not of such a nature, that, while x increases, it either increases or decreases
continuously, it will have a maximum or minimum somewhere else, this
means a value of such a kind, which is either greater or smaller than the
preceding and following values. For example, this function xx− 2x + 3 has a
minimum value, if one puts x = 1; for, whatever other value is attributed to x,
the function will always have a larger value.

§251 But to understand the nature of maxima and minima more clearly, let y
be a function of x, which has a maximum for x = f , and it is seen, if x is then
assumed to be either greater or smaller than f , that the value of y to result
from this will be smaller than the value it has for x = f . In like manner, if
the function y has a minimum value for x = f , it is necessary, that, no matter
whether x is assumed to be larger or smaller than f , always a larger value
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of y results; and this is the definition of absolute maxima and minima. But
furthermore, this function y is also said to have a maximum value for x = f ,
if that value of y was larger than the closest ones, either the following or the
preceding, which result, if x is assumed to be a little bit larger or smaller than
f , even though by substituting other values for x the function y might have
larger values. Similarly, the function y is said to have a minimum value for
x = f , if that value was smaller than those, which it has, if the closest larger
or smaller values than f are substituted for x. And in that sense we will use
the terms maxima and minima.

§252 But before we show how to find these maxima and minima, we note
that this investigation extends only to those functions of x, which we called
uniform above and which are of such a nature that for each value of x they in
like manner have only one value. But we called functions biform and multiform
which for each value of x have two or several values at the same time; examples
of this kind of functions are the roots of quadratic equations and higher order
equations. Therefore, if y was a biform or multiform function of such a kind
of x, it cannot be said to take on a maximum or minimum value for x = f ; for,
since it has either two or more values at the same time for x = f and the same
is true for the preceding and the following contiguous values, one cannot
decide whether x = f is a maximum or minimum, if not by coincidence all
values corresponding to the respective values of x, except one, of the function
y, are imaginary; in this case functions of this kind are counted to the class
of uniform functions. Therefore, we will at first consider the class of uniform
functions in this chapter; but then, in the following chapters, we will show,
how maxima and minima of multiform functions must be considered.

§253 Therefore, let y be a uniform function, which hence, no matter which
value is substituted for x, always has precisely one real value, and let x denote
the value, which induces the maximal or minimal value to the function y.
Therefore, in the first case, no matter whether one substitutes x + α or x− α

for x, the value of y will be smaller than for α = 0, in the second case on the
other hand larger. Therefore, because, having written x + α instead of x, the
function y goes over into

y +
αdy
dx

+
α2ddy
2dx2 +

α3d3y
6dx3 + etc.,

but, having written x− α instead of x, it goes over into
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x− αdy
dx

+
α2ddy
2dx2 −

α3d3y
6dx3 + etc.,

it is necessary that in the case of a maximum

y > y +
αdy
dx

+
α2ddy
2dx2 +

α3d3y
6dx3 + etc.

and

y > y− αdy
dx

+
α2ddy
2dx2 −

α3d3y
6dx3 + etc.

But in the case, in which the value of y is a minimum value, it will be

y < y +
αdy
dx

+
α2ddy
2dx2 +

α3d3y
6dx3 + etc.

y < y− αdy
dx

+
α2ddy
2dx2 −

α3d3y
6dx3 + etc.

§254 Since these equations have to hold, if α denotes a very small quantity,
let us assume α to be so small that its higher powers can be omitted, and then
so for the case of the maximum as the minimum it has to be αdy

dx = 0. For, if
αdy
dx was not = 0, the value of y could be neither be maximum nor minimum

value. Therefore, to investigate maxima or minima one has the general rule,
that the differential of propounded y is to be put equal to zero, and that value
of x, which renders the function either maximal or minimal, will be a root of
that equation. But whether the value of y found this way is a maximum or a
minimum value, is not clear at this point; it can even happen, that y is neither
a maximum nor a minimum value in this case; for, we only found that in both
cases it will be dy

dx = 0 and we did not vice versa prove, if dy
dx = 0, that also a

maximum or minimum value of y results.
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§255 Nevertheless, to investigate cases, in which the value of y is either a
maximum or minimum value, first all the roots of equation dy

dx = 0 are to be
found. Having found these, it is to be checked, whether for those values the
function y has a maximum or minimum value or none of both is the case. For,
we will show that it can happen that there is neither a maximum or minimum,
even though dy

dx = 0.
Let f be one of the values of x satisfying the equation

dy
dx

= 0,

and substitute this value in the expressions ddy
dx2 , d3y

dx3 etc. and by this substitution
let

ddy
dx2 = p,

d3y
dx3 = q,

d4y
dx4 = r etc.

But, having written f instead of x, let the function y go over into F, and if one
writes f + α instead of x, this function will go over into

F +
1
2

α2 p +
1
6

α3q +
1

24
α4r + etc.;

but if one writes f − α instead of x, this expression will result

F +
1
2

α2 p− 1
6

α3q +
1

24
α4r− etc.;

hence it is plain, if p was a positive quantity, that both values will be larger
than F, at least if α denotes a very small quantity, and therefore the value F,
which the function y has for x = f , will be a minimum value. But if p is a
negative quantity, then the value x = f will induce a maximal value to the
function y.

§256 But if it was p = 0, then the value of q is to be considered; if it was
not = 0, the value of y will be neither a maximum nor a minimum value; for,
having put x = f + α, it will be F + 1

6 α3q > F and, having put x = f − α, it
will be F− 1

6 α3q < F. But if it also was q = 0, the quantity r is to be considered;
if it had a positive value, the value of the function F, which is has for x = f ,
will be a minimum value; but if r has a negative value, F will be a maximum
value. But if also r vanishes, one has to consider the value of the following
letter s, and has to argue as for the letter q. If s was not = 0, then the value
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F will be neither a maximum nor a minimum value; but if also s = 0, then
the following letter t, if it has a positive value, will indicate a minimum; but
if it has a negative value, it will indicate a maximum. But if also this letter
t vanishes, then one has to proceed to the next letter and argue as for the
preceding ones. And this way one can decide for any root of the equation
dy
dx = 0, whether the function y has a maximum or minimum value or none of
both; and this way all maxima and minima which the function y can have will
be found.

§257 Therefore, if the equation dy
dx = 0 has two equal roots, such that it has

the quadratic factor (x− f )2, then at the same time ddy
dx2 will vanish for x = f

and it will be p = 0, but not q = 0. In this case the function y will have neither
a maximum nor a minimum value. But if the equation dy

dx = 0 has three equal
roots or dy

dx has the cubic factor (x − f )3, then, having put x = f , it will be
ddy
dx2 = 0 and d3y

dx3 = 0, but not d4y
dx4 = 0. Therefore, if the value of this term

was positive, it will indicate a minimum value, if negative, a maximum value.
Therefore, the rule explained before reduces to this, that, if the fraction dy

dx had
a factor (x− f )n, while n is an odd number, the function y, if in it one puts
x = f , will have either a maximum or minimum value, but if the exponent n
was an even number, the substitution x = f will produce neither a maximum
nor a minimum value.

§258 Furthermore, the finding a maximum or minimum is often simplified
tremendously by the following considerations. In cases in which the function
y has a maximum or minimum value, each multiple of it, say ay, if a was
a positive quantity, will also be a maximum or minimum value, and in the
same way y3, y5, y7 etc. and in general yn, if n was a positive odd number,
since formulas of this kind are of such a nature that for increasing y they also
increase and for decreasing y they decrease. But in these cases, in which y has
maximum or minimum value, −y, −ay, b− ay and in general b− ayn, while
n is an odd positive integer, in reversed order, will have either minimum or
maximum values. In the same way in the cases, in which y has maximum or
minimum value, these formulas a

y , a
y3 , a

y5 etc. and in general a
yn ± b, while a

denotes a positive quantity and n a positive odd number, in reverse order, will
have a minimum or a maximum value; but if a was a negative quantity, then
these formulas will have a maximum value, if y was a maximum value, and a
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minimum value, if y is a minimum value.

§259 But these rules cannot be transferred to even powers the same way;
for, since, if y has a negative value, its even powers y2, y4 etc. induce positive
values, it can happen, that, if y has a minimum value, a negative one of course,
that its even powers have maximum values. Therefore, having taken this into
account, we will be able to affirm, if y has a maximum or minimum value,
while its value is positive, that its even powers y2, y4 etc. will also have a
maximum or minimum, but if a negative value of y was a maximum value,
that its square yy will be a maximum value, and otherwise, if a negative value
of y was a minimum value, that y2, y4 etc. will have a maximum value. But if
the even exponents of y were negative, then the opposite will happen. Further-
more, what we mentioned here on the even and odd exponents, will not only
hold for integer numbers, but also for fractional ones, whose denominators
are odd numbers; for, the fractions 1

3 , 5
3 , 7

3 , 1
5 , 3

5 etc. are equivalent to odd
numbers in this case, but 2

3 , 4
3 , 2

5 , 4
5 , 6

7 etc. are equivalent to even numbers.

§260 But if the denominators were even numbers, then, because, if y has
a negative value, its powers y

1
2 , y

3
4 etc. become imaginary, here one can say

only the following about them: If a positive value of y was a maximum
or a minimum value, y

1
2 , y

3
2 , y

1
4 etc. will also have either a maximum or

minimum value, but on the other hand y−
1
2 , y−

3
2 , y−

1
4 etc. can have minimum

or maximum values. But if these irrationalities take on two values at the same,
one positive, one negative, for the negative ones the contrary of that, what
we said about the positive ones here, holds. But if a negative value of y is a
maximum or minimum value, since all powers of this kind become imaginary,
one will not be able to count them to maxima or minima. Therefore, by means
of these auxiliary remarks, the investigation of maxima and minima is often
simplified and otherwise would be extremely difficult.

§261 Because these things extend only to rational functions, which are the
only uniform functions, at first let us expand polynomial functions and find
their maxima and minima. Therefore, because functions of this kind are
reduced to this form

xn + Axn−1 + Bxn−2 + Cxn−3 + etc.,
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at first it is plain that their values cannot be greater than if one sets x = ∞;
then on the other hand, if x = −∞, the value of these formulas become = ∞n,
if n is an even number, but −∞n, if n is an odd number, which value therefore
will be the smallest of all. But furthermore often other maxima and minima,
in the sense we understand those terms, are given, what we will illustrate in
the following examples.

EXAMPLE 1

To find the values of x for which the function (x − a)n takes on maximum or a
minimum value.

Having put (x− a)n = y it will be

dy
dx

= n(x− a)n−1;

having put this expression = 0, it will be x = a. Therefore, because dy
dx

contains the factor (x− a)n−1, from § 257 it is understood that y cannot have
a maximum or a minimum value, if n− 1 is not an odd number or n is not
even. But since

dny
dxn = n(n− 1)(n− 2) · · · 1,

i.e. a positive number, it follows that the value of y for x = a will turn out
to be a minimum value. This is obvious, of course; for, having written x = a,
y = 0, and if x is put to be either greater or smaller than a, because of the even
number n, the function y will be positive, i.e. greater than zero; but if n was
an odd number, then the function y = (x− a)n can have neither a maximum
nor a minimum value. But it is perspicuous that the same holds, if n was a
fractional number, no matter whether it is odd or even, (x− a)

µ
ν will have a

minimum value for x = a, if µ was an even number and ν was an odd number;
but if both were odd, neither a maximum nor a minimum value will exist.

EXAMPLE 2

To find the cases in which the value of this formula xx + 3x + 2 has a maximum or a
minimum value.

Put xx + 3x + 2 = y; it will be
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dy
dx

= 2x + 3,
ddy
2dx2 = 1.

Therefore, set 2x + 3 = 0; it will be x = − 3
2 . Whether this case produces a

maximum or minimum value, will be found from the value ddy
2dx2 = 1; since

it is positive, whatever x is, it indicates a minimum value. But for x = − 3
2

we have y = − 1
4 , and if any other values are attributed to x, the value of y to

result from this will always be larger than − 1
4 . From the nature of the formula

xx + 3x + 2 it is also seen that it has to have a minimum value; for, because it
grows to infinity, if one puts x = +∞ or x = −∞, it is necessary, that a certain
value of x leads to a smallest quantity of y.

EXAMPLE 3

To find the cases in which this expression x3 − axx + bx− c takes on the maximum
or minimum value.

Having put y = x3 − axx + bx− c, it will be

dy
dx

= 3xx− 2ax + b and
ddy
2dx2 = 3x− a,

d3y
6dx3 = 1.

Therefore, set dy
dx = 3xx− 2ax + b = 0; it will be

x =
a±
√

aa− 3b
3

,

from which it it clear, if it is not aa > 3b, that the propounded formula will
neither have a maximum nor a minimum value. Therefore, this equation
results

ddy
2dx2 = ±

√
aa− 3bb,

whence it is understood, if it not aa = 3b, that the value x = a+
√

aa−3b
3 renders

the formula y = x3 − axx + bx− c minimal, the other value x = a−
√

aa−3b
3 on

the other hand renders it maximal. But how large will these value of y be?
Since 3xx− 2ax + b = 0 or x3 − 2

3 axx + 1
3 bx = 0, it will be

y = −1
3

axx +
2
3

bx− c
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and, because of 1
3 axx− 2aa

9 x + ab
9 = 0,

y =
2
9
(3b− aa)x +

ab
9
− c = −2a(aa− 3b)

27
−∓2(aa− 3b)

√
aa− 3b

27
+

ab
9
− c

or

y = −2a3

27
+

ab
3
− c∓ 2

27
(aa− 3b)

3
2 ,

where the upper sign holds for the minimum value, but the lower sign for the
maximum value.

Therefore, the case aa = 3b remains; because in that case ddy
dx2 = 0, but the

following term d3y
6dx3 = 1 is not = 0, it follows that in this case the propounded

formula has neither a maximum nor a minimum value.

EXAMPLE 4

To find the cases in which this function of x, x4 − 8x3 + 22x2 − 24x + 12 has a
maximum or minimum value.

Having put y = x4 − 8x3 + 22x2 − 24x + 12, it will be

dy
dx

= 4x3 − 24x2 + 44x− 24,
ddy
2dx2 = 6x2 − 24x + 22.

Now set

dy
dx

= 4x3 − 24x2 + 44x− 24 = 0 or x3 − 6x2 + 11x− 6 = 0;

three real values for x are found, i.e.

I. x = 1, II. x = 2, III. x = 3.

From the first value ddy
2dx2 = 4 and hence for x = 1 the propounded function has

a minimum value. From the second value x = 2 we find ddy
2dx2 = −2 and hence

the propounded function has a maximum value. From the third value x = 2
we deduce ddy

2dx2 = +4 and hence the propounded function has a minimum
value again.
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EXAMPLE 5

Let this function be propounded y = x5 − 5x4 + 5x3 + 1; it is in question in which
cases it has a maximum or a minimum value.

Since

dy
dx

= 5x4 − 20x3 + 15xx,

form the equation x4 − 4x3 + 3xx = 0, whose roots are

I. and II. x = 0, III. x = 1, IV. x = 3.

Since the first and second root are the same, from them neither a maximum
nor a minimum value follows; for, ddy

dx2 = 0, but d3y
dx3 does not vanish. But the

third root x = 1, because of ddy
2dx2 = 10x3− 30x2 + 15x, yields ddy

2dx2 = −5 and in
this case the function takes on a maximum value. From the fourth root x = 3
we have ddy

2dx2 = 45 and hence the propounded function has minimum value.

EXAMPLE 6

To find the cases in which this formula y = 10x6 − 12x5 + 15x4 − 20x3 + 20 has a
maximum or a minimum value.

Therefore, it will be

dy
dx

= 60x5 − 60x4 + 60x3 − 60x2 and
ddy

60dx2 = 5x4 − 4x3 ++3x2 − 2x.

Form the equation x5− x4 + x3− xx = 0; since, having resolved it into factors,
x2(x− 1)(xx + 1) = 0, it has two equal roots x = 0 and furthermore the root
x = 1 and additionally two imaginary ones from xx + 1 = 0. Therefore, since
the two equal roots x = 0 exhibit neither a maximum nor a minimum, only
the root x = 1 is to be considered, from which ddy

60dx2 = 2, whose positive value
indicates a minimum value.

§262 Therefore, the determination of maxima and minima depends on the
roots of the equation dy

dx = 0; because its highest power is one degree lower
than the highest power in the propounded equation, it is obvious, if in general
this function is propounded
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xn + Axn−1 + Bxn−2 + Cxn−3 + Dxn−4 + etc. = y,

that its maxima and minima are determined by means of the roots of this
equation

nxn−1 + (n− 1)Axn−2 + (n− 2)Bxn−3 + (n− 3)Cxn−4 + etc. = 0.

Let us put that the real roots of this equation ordered according to their
magnitude are α, β, γ, δ etc. such that α is the largest, β < α, γ < β etc. And
first, if these roots are all different, each of them will lead to a maximum or
minimum value of the propounded formula y and hence the function y will
have as many maxima or minima as the equation dy

dx = 0 had real different
roots. But if two or more roots were equal to each other, it will be as follows:
two equal roots will exhibit neither a maximum nor a minimum value, but
three on the other hand will be equivalent to a single one; and in general,
if the number of equal roots was an even number, hence no maximum nor
minimum results; but if the number is odd, one maximum or minimum results
from this.

§263 But which roots produce maxima and which produce minima, can be
defined without using the rule given before as follows. Since the function
y for x = ∞ also becomes infinite and values of x within the boundaries ∞
and α produce neither a maximum nor a minimum value, it is perspicuous
that the values of the function y, if successively all values from ∞ up to α are
substituted for x, have to decrease continuously; and hence the value x = α +
ω will lead to a larger value of the function y than the value x = α; therefore,
because x = α produces a maximum or minimum, it is necessary that in
this case the function y takes on a minimum value. Therefore, decreasing x
or putting x = α− ω, the value of y will increase again, until finally x = β,
which is the second root of the equation dy

dx = 0 producing a maximum or
minimum; therefore, this second root x = β will yield a maximum and the
value x = β−ω will cause the function y to be smaller than for x = β, until
one gets to x = γ, which as a logical consequence will generate a minimum
value again. From this reasoning it is understood that the first, third, fifth etc.
root of the equation dy

dx = 0 will exhibit minima but the first, second, fourth,
sixth etc. exhibit maxima. But at the same time it is hence understood that in

11



the case of two equal roots a maximum and minimum coalesce and so none
of both actually occurs.

§264 Therefore, if in the propounded function

y = xn + Axn−1 + Bxn−2 + Cxn−3 + etc.

the greatest exponent n was an even number, the equation

dy
dx

= xn−1 + (n− 1)Axn−2 + etc. = 0

will be of odd degree and will hence have one or three or five or any odd
number of real roots. If just one root was real, it will give a minimum; if three
were real, the largest will yield a minimum, the middle one a maximum point
and the smallest a minimum; and if five roots were real, the function y will
have three minimum values and two maximum values; and so forth.

But if the exponent n was an odd number, the equation dy
dx = 0 will have an

odd degree and will have either no or two or four or six etc. real roots. In the
first case the function y will have neither a maximum nor a minimum value;
in the other case, in which two roots are given, the greater one will indicate
a minimum value, the smaller a maximum value; but the first (which is the
largest) and the third of four roots will produce a minimum value, the second
and the fourth on the other hand a maximum value. But no matter how many
real roots were there, they will give maxima and minima alternately.

§265 Let us proceed to rational functions which constitute the other kind of
uniform functions. Therefore, let

y =
P
Q

where P and Q are any polynomial functions of x; and at first it is certainly
clear, if a value of such a kind is attributed to x that Q = 0, if not at the
same time P vanishes, that the function y becomes infinite, what appears
to be a maximum value. Nevertheless, this case cannot be considered as a
maximum value; for, because the inverse fraction Q

P takes on a minimum
value in the same cases the propounded P

Q takes on a maximum value, the

fraction Q
P would have to take on a minimum value, if Q vanishes; but this

does not always happen, since even smaller values, i.e. negative values, could
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occur. Therefore, this at the same time confirms the rule given before, that
maxima and minima must be found from the equation dy

dx = 0. Therefore, in
the propounded cases it will be

dy
dx

=
QdP− PdQ

QQdx

and hence the roots of this equation

QdP− PdQ = 0

will give the a maximum or a minimum values of the function y. And if there
is any doubt, whether y takes on a maximum or a minimum value, one has
to check the value ddy

dx2 ; if it was positive, it will indicate a minimum value,

but if it was negative a minimum value. If also this value ddy
dx2 vanishes, which

happens, if the equation dy
dx = 0 has two or more equal roots, just recall that

an equal number of equal roots produce neither a maximum nor a minimum
value.

EXAMPLE 1

To find the cases in which the function x
1+xx takes on a maximum or a minimum

value.

At first it is certainly clear that this function goes over into zero in the three
cases x = ∞, x = 0 and x = −∞, whence it will have at least either two
maximum or two minimum values. To find them put y = x

1+xx and it will be

dy
dx

=
1− xx

(1 + xx)2 and
ddy
dx2 =

−6x + 2x3

(1 + xx)3 .

Now set dy
dx = 0; it will be 1− xx = 0 and either x = +1 or x = −1. In the

first case x = +1 we have ddy
dx2 = − 4

23 and hence y has a maximum value = 1
2 ;

in the second case x = −1 we have ddy
dx2 = + 4

23 and hence y has a minimum
value = − 1

2 .

These are also found more easily, if the propounded fraction x
1+xx is inverted

or by putting y = 1+xx
x = x + 1

x , if we recall that then all values, which were
found to be maximum values, are to be turned into minimum values and vice
versa. But it will be
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dy
dx

= 1− 1
xx

and
ddy
dx2 =

2
x3 .

Therefore, having set dy
dx = 0, xx− 1 = 0 and hence either x = +1 or x = −1 as

before. And in the case x = +1 we have ddy
dx2 = 2 and hence y has a minimum

value and the propounded formula 1
y a maximum value. But in the case

x = −1 we find ddy
dx2 = −2, whence y has a maximum value and 1

y a minimum
value.

EXAMPLE 2

To find the cases in which the formula 2−3x+xx
2+3x+xx has a maximum or a minimum value.

Having put y = xx−3x+2
xx+3x+2 , it will be

dy
dx

=
6x2 − 12

(xx + 3x + 2)2 and
ddy
dx2 =

−12x3 + 72x + 72
(xx + 3x + 2)3 .

Set dy
dx = 0; it will be either x = +

√
2 or x = −

√
2. In the first case it will be

ddy
dx2 =

48
√

2 + 72
(4 + 3

√
2)3

and hence will be positive, because of the positive numerator and denominator;
Therefore, y will take on a minimum value

=
4−
√

32
4 +
√

32
= 12

√
2− 17 = −0.02943725.

In the second case x = −
√

2

ddy
dx2 =

−48
√

2 + 72
(4− 3

√
2)3

=
24(3− 2

√
2)

(4− 3
√

2)3
,

whose value, because of the affirmative numerator and negative denominator,
will be negative and hence y will take on a maximum value

=
4 + 3

√
2

4− 3
√

2
= −12

√
2− 17 = −33.97056274.

This value, even though it is smaller than the first minimum value, is nevert-
heless a maximum value, since it is larger than the values in its neighborhood,
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which result, if a values little bit greater or smaller than −
√

2 are substitu-
ted for x. Therefore, because

√
2 is contained within the limits 4

3 and 3
2 , the

crosscheck will easily be done this way:

if x =
4
3

, we have y = − 2
70

= −0.0285

if x =
√

2, we have y = +12
√

2− 17 = 0.0294 minimum

if x =
3
2

, we have y = − 1
35

= −0.0285

if x = −4
3

, we have y = −35

if x = −
√

2, we have y = −33.970 maximum

if x = −3
2

, we have y = −35.

EXAMPLE 3

To find the cases in which the formula xx−x+1
xx+x−1 has a maximum or a minimum value.

Put y = xx−x+1
xx+x−1 and it will be

dy
dx

=
2xx− 4x

(xx + x− 1)2 and
ddy
dx2 =

−4x3 + 12xx + 4
(xx + x− 1)3 .

Set dy
dx = 0; it will be either x = 0 or x = 1; in the first case ddy

dx2 = 4
−1 and

hence y will have a maximum value = −1. In the second case ddy
dx2 = 20

52 and
hence y has the minimum value = 3

5 , even though that maximum value is
smaller than this minimum value. That this is indeed the case is seen from the
following calculations
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if x = −1
3

, it will be y = −13
11

if x = +0, it will be y = −1 maximum

if x = +
1
3

, it will be y = −7
5

if x = 2− 1
3

, it will be y = −19
13

if x = 2, it will be y = +
3
5

minimum

if x = 2 +
1
3

, it will be y = −37
61

.

But that, if one puts x = 1, y = 1 and hence > −1, is the reason why between
the values 0 and 1 there is one value of x, for which y = ∞.

EXAMPLE 4

To find the the cases in which this fraction x3+x
x4−xx+1 has a maximum or a minimum

value.

Having put y = x3+x
x4−xx+1 , it will be

dy
dx

=
−x6 − 4x4 + 4xx + 1

(x4 − xx + 1)2 and
ddy
dx2 =

2x9 + 18x7 − 30x5 − 16x3 + 12x
(x4 − xx + 1)3 .

Therefore, we will have this equation

x6 + 4x4 − 4xx− 1 = 0,

which is resolved into these two

xx− 1 = 0 and x4 + 5x2 + 1 = 0;

the roots of the first of these equations are x = +1 and x = −1, the other
gives x = − 5±

√
21

2 , from which no real root emerges. Therefore, the first of the

16



two roots, x = +1, gives ddy
dx2 = −14 and therefore y has a maximum value

= 2; the other root x = −1 gives ddy
dx2 = +14 and therefore y has a minimum

value = −2.

EXAMPLE 5

To find the cases in which this fraction x3−x
x4−xx+1 has a maximum or a minimum value.

Having put y = x3−x
x4−xx+1 , it will be

dy
dx

=
−x6 + 2x4 + 2x2 − 1

(x4 − x2 + 1)2 and
ddy
dx2 =

2x9 − 6x7 − 18x5 + 10x3

(x4 − x2 + 1)3 .

But having put dy
dx = 0, it will be

x6 − 2x4 − 2x2 + 1 = 0,

which divided by xx + 1 gives

x4 − 3x2 + 1 = 0,

and this is further resolved into

xx− x− 1 = 0 and xx + x− 1 = 0,

whence the following four real roots result

I. x =
1 +
√

5
2

II. x =
1−
√

5
2

,

III. x = −1 +
√

5
2

IV. x = −1−
√

5
2

.

Since all are contained in the equation x4 − 3xx + 1 = 0, having put x4 =
3xx− 1, the following equations will hold for all of them

ddy
dx2 =

2x(10− 20xx)
8x6 =

5(1− 2xx)
2x5 =

5(1− 2xx)
2x(3xx− 1)

and y =
x3 − x

2xx
=

xx− 1
2x

.

But, for the first two, resulting from the equation xx = x + 1, it will be

17



ddy
dx2 = − 5(2x + 1)

2x(3x + 2)
= −5(2x + 1)

2(5x + 3)
and y =

1
2

.

Therefore, the first root x = 1+
√

5
2 gives

ddy
dx2 = −5(2 +

√
5)

11 + 5
√

5

and hence y has a maximum value. The second root x = 1−
√

5
2 gives

ddy
dx2 = −5(2−

√
5)

11− 5
√

5
= −5(

√
5− 2)

5
√

5− 11

and hence y = 1
2 will also have a maximum value. The two remaining roots

give y = − 1
2 , a minimum value.

§266 Therefore, in these examples the exploration, whether a certain found
value produces a maximum or a minimum, can be simplified; for, because
dy
dx = 0, the value of the term ddy

dx2 , having taken into account its equation, can
be expressed in an easier way. For, let the fraction y = P

Q be propounded; since

dy =
QdP− PdQ

QQ
and QdP− PdQ = 0,

it will be

ddy =
d(QdP− PdQ)

Q2 − 2dQ(QdP− PdQ)

Q3 .

But, because of QdP− PdQ = 0, this last term vanishes and it will be

ddy =
d(QdP− PdQ)

QQ
=

QddP− PddQ
Q2 .

But because the decision is to be made from the either positive or negative
value of this term, and the denominator Q2 is always positive, this can be
done considering only the numerator in such a way, that, if QddP− PddQ
or d(QdP−PdQ)

dx2 was positive, a minimum will be indicated, if it is negative, a

maximum. Or after dy
dx was found, whose form will be of this kind R

QQ , only
find dR

dx , and from the root, which causes this expression to be to positive, a
minimum value will result and otherwise a maximum value.
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§267 If the denominator of the propounded fraction was a square or any
higher power such that y = P

Qn , it will be

dy =
QdP− nPdQ

Qn+1

and, having put QdP−nPdQ
dx = R, it will be

dy
dx

=
R

Qn+1

and the maximum and minimum values will be determined from the roots of
the equation R = 0. Further, since

ddy
dx

=
QdR− (n + 1)RdQ

Qn+2 ,

because of R = 0, it will be

ddy
dx

=
dR

Qn+1 ;

its positive value will indicate a minimum value, a negative a maximum value.
But it is perspicuous, if n was an odd number, that, because of the always
positive Qn+1, the decision can be made considering only dR

dx ; but if n is an
even number, use the formula QdR

dx .

But let us further put that a fraction of this kind is propounded Pm

Qn = y; it will
be

dy =
(mQdP− nPdQ)Pm−1

Qn+1 ;

therefore, if one puts mQdP−nPdQ
dx = R, the roots of the equation R = 0 will

indicate the cases, in which the function y has a maximum or a minimum
value. Therefore, since

dy
dx

=
Pm−1R
Qn+1 ,

it will be

ddy
dx

=
Pm−2R((m− 1)QdP− (n + 1)PdQ)

Qn+2 +
Pm−1dR

Qn+1 ,
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and, because of R = 0, it will be

ddy
dx2 =

Pm−1dR
Qn+1dx

;

this can additionally be divided by any square P2µ

Q2ν to make the decision.
Furthermore, also the equation P = 0 will give a maximum or a minimum
point, if m was an even number; and in like manner considering the inverse
formula Qn

Pm a maximum or minimum point will result by putting Q = 0,
if n was an even number, as we showed above (§ 257); but here we do not
consider the maximum or minimum values to result from this, but only, in
order to explain the use of the method, investigate those, which result from
the equation R = 0.

EXAMPLE 1

Let the fraction (α+βx)m

(γ+δx)n be propounded; in which case it takes on a minimum or a
maximum value, is in question.

Having put y = (α+βx)m

(γ+δx)n , first it is certainly clear that it will be y = 0, if
x = − α

β , and y = ∞, if x = −γ
δ ; the latter of these cases will give a minimum

value, the first a maximum value, if m and n were even numbers. Furthermore,
it will be

dy
dx

=
(α + βx)m−1

(γ + δx)n+1 ((m− n)βδx + mβγ− nαδ)

and hence

R = (m− n)βδx + mβγ− nαδ.

Therefore, having put R = 0, it will be

x =
nαδ−mβγ

(m− n)βδ
.

Further, because of dR
dx = (m− n)βδ, it is perspicuous, whether

Pm−1dR
Qn+1dx

=
mm−1βn+1

nn+1δm−1

(
αδ− βγ

m− n

)m−n−2 dR
dx

is a positive or negative quantity. In the first case, the propounded formula
will have minimum value, in the second a maximum value.
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So, if it was y = (x+3)3

(x+2)2 , it will be Pm+1dR
Qn+1dx = 9

8 and hence the formula (x+3)3

(x+2)2 will
have a minimum value for x = 0.

But if y = (x−1)m

(x+1)m , it will be

Pm−1dR
Qn+1dx

=
mm−1

nn+1

(
n−m

2

)n−m+2

(m− n)

and x = n+m
n−m . But because m and n are put to be positive numbers, the decision

is to be made from the formula (n−m)n−m+2(m− n) or (n−m)n−m(m− n).
Therefore, if it was n > m, the found value x = n+m

n−m will always give a
maximum value; but if n < m, the number m− n will give a minimum value,
but an odd a maximum value; so (x−1)3

(x+1)2 will have a maximum value for

x = −5; for, y = − 63

42 = − 27
2 .

EXAMPLE 2

Let the formula y = (1+x)3

(1+xx)2 be propounded.

It will be

dy
dx

=
(1 + x)2

(1 + xx)3 (3− 4x− xx) and
Pm−1

Qn+1 ·
dR
dx

= − (1 + x)2

(1 + xx)3 (2x + 4);

because here (1 + x)2 and (1 + xx)3 always have a positive value, the decision
is to be made from the formula −x − 2; if it was positive, it indicates a
minimum value, if negative, a maximum value. But from the equation 3−
4x− xx = 0 it follows that either

x = −2 +
√

7 or x = −2−
√

7.

In the first case −x − 2 = −
√

7 and hence the propounded fraction will
have a maximum value, in the other case a minimum value, because of
−x− 2 = +

√
7. But having put x = −2 +

√
7, it will be 1 + x = −1 +

√
7 and

1 + xx = 12− 4
√

7, whence

y =

(
−1 +

√
7

12− 4
√

7

)2

(
√

7− 1) =
(2 +

√
7)2(
√

7− 1)
16

=
17 + 7

√
7

16
= 2.220.
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But having put x = −2−
√

7, it will be

y =
17− 7

√
7

16
= −0.0950.

§268 There are also irrational and transcendental functions which have the
property of uniform functions, and therefore their maxima and minima can be
found the same way. For, the cube and all odd roots are indeed uniform, since
they exhibit only one single real value; but even though square roots and roots
of all even powers, if they are real, actually denote two values, the one positive,
the other negative, each of them can nevertheless be considered separately and
in this sense one can even investigate the maxima and minima. So, if y was
any function of x, even though

√
y takes on two values, one can nevertheless

treat each one separately. +
√

y will have a maximum or minimum value, if y
had one, if it was affirmative, since otherwise

√
y would become imaginary.

But vice versa −√y will have a maximum or minimum value in the same
cases, in which +

√
y has a maximum or minimum value. But any power y

m
n

takes on a maximum or minimum value in the same cases, if n was an odd
number; but if n was an even number, only those cases remain, in which y has
a positive value, and in these cases, because of the two values, two maximum
or minimum values will result.

§269 Since the differential equation, which results from the power of the
function ym, is ym−1dy

dx = 0, whose roots at the same time indicate the cases, in
which a surdic power y

m
n has a maximum or minimum value, to investigate

this value one has two equations, the one ym−1 = 0, the other dy
dx = 0, the latter

of which goes over into y = 0 and exhibits maxima and minima only, if m− 1
was an odd number or if m was an even number, for the reasons mentioned
in § 257. Therefore, because n is an odd number, if m was an even number,
if we denote the even numbers by 2µ and the odd numbers by 2ν− 1, the
function y2µ:(2ν−1) will have a maximum or minimum value, if those values
are attributed to x which are found so from the equation y = 0 as from this
dy
dx = 0. But if m is an odd number, the function y(2µ−1):2ν or y(2µ−1):(2ν) has
a maximum or minimum value only, if a value resulting from this equation
dy
dx = 0 is substituted for x. And in the second case y(2µ−1):2ν maxima and
minima only result, if y has positive values for the values found from the
equation dy

dx = 0.
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§270 So, this formula x
2
3 takes on a minimum value for x = 0, because in

this case x2 has minimum value. But if we do not reduce the formula x
2
3 to

the form x2, the method given before would not indicate this at all, since in
the case x = 0 the terms of the series

y +
ωdy
dx

+
ω2ddy
2dx2 +

ω3d3y
6dx3 + etc.,

whence the decision is to be made, except for the first all become infinite. For,
having put y = x

2
3 , it will be

dy
dx

=
2

3x
1
3

,
ddy
dx2 =

−2

9x
4
3

,
d3y
dx3 =

2 · 4
27x

7
3

etc.

And hence neither the equation dy
dx = 2

3x
1
3
= 0 shows the value x = 0 nor

the following terms indicate whether it is a maximum or a minimum value.
Therefore, since we assumed that the series

y +
ωdy
dx

+
ω2ddy
2dx2 +

ω3d3y
6dx3 + etc.

becomes convergent, if ω is assumed to be a very small quantity, in those cases,
in which this series becomes divergent, the general method is not applicable,
what happens in the example y = x

2
3 mentioned here, if one puts x = 0.

Therefore, in these cases the same reduction we used before will be necessary
to reduce the propounded expression to another form, which is not subjected
to this inconvenience. But this only happens in very few cases which are

contained in the formula y
2µ

2ν−1 or are easily reduced to it. So, if the maxima

and minima of the formula y
2µ

2ν−1 z are in question, where z is any function of
x, investigate this form y2µz2ν−1, which has a maximum or minimum value in
the same cases as the propounded one.

§271 Having excluded this case, which is now easily handled, functions
containing irrational quantities, can be treated the same way as rational
functions and their maxima and minima can be determined, what we will
illustrate in the following examples.
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EXAMPLE 1

Let the formula
√

aa + xx − x be propounded; in which cases it has maximum or
minimum values is in question.

Having put y =
√

aa + xx− x, it will be

dy
dx

=
x√

aa + xx
− 1 and

ddy
dx2 =

aa
(aa + xx)3:2 .

Having put dy
dx = 0, it will be x =

√
aa + xx and hence x = ∞ and ddy

dx2 = 0.

In a like manner the following terms d3y
dx3 , d4y

dx4 etc. all become = 0; hence one
cannot decide, whether it is a maximum or a minimum. The reason for this is
that it actually is so x = −∞ as x = +∞. Putting x = ∞, because of

√
aa + xx = x +

aa
2x

,

we have y = 0, which value is the smallest of all.

EXAMPLE 2

Let the cases be in question in which this form
√

aa + 2bx + mxx− nx takes on a
maximum or a minimum value.

Having put y =
√

aa + 2bx + mxx− nx, it will be

dy
dx

=
b + mx√

aa + 2bx + mxx
− n;

having put this = 0, it will be

bb + 2mbx + mmxx = nnaa + 2nnbx + mnnxx

or

xx =
2bx(nn−m) + nnaa− bb

mm−mnn
and hence

x =
(nn−m)b±

√
mnn(m− nn)aa− nn(m− nn)bb

m(m− nn)
or
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x = − b
m
± n

m

√
maa− bb
m− nn

;

hence

√
aa + 2bx + mxx =

b + mx
n

= ±
√

maa− bb
m− nn

.

Therefore, since

ddy
dx2 =

maa− bb

(aa + 2bx + mxx)
3
2

,

it will be

ddy
dx2 =

maa− bb

±
(

maa−bb
m−nn

) 3
2
=
±(m− nn)

√
m− nn√

maa− bb
.

Therefore, a maximum or minimum only exists, if m−nn
maa−bb was a positive

quantity. But if it is a positive quantity, the upper sign will give a minimum,
if m > nn, a maximum on the other hand, if m < nn; the contrary happens,
if the lower sign holds. Therefore, if m = 2, n = 1 and b = 0, the formula√

aa + 2xx− x has a minimum value for x = + 1
2

√
2aa = a√

2
, but a maximum

value for x = − a√
2
. Therefore, the minimum value will be = a

√
2− a√

2
= a√

2

and the maximum value = a
√

2 + a√
2
= 3a√

2
.

EXAMPLE 3

To find the cases in which this expression 4
√

1 + mx4 + 4
√

1− nx4 has a maximum or
a minimum value.

Because dy
dx = mx3

(1+mx4)
3
4
− nx3

(1−nx4)
3
4

, it will be

mx3(1− nx4)
3
4 = nx3(1 + mx4)

3
4 and hence m4(1− nx4)3 = n4(1 + mx4)3

or

n4 −m4 + 3mn(n3 + m3)x4 + 3m2n2(n2 −m2)x8 + m3n3(n + m)x12 = 0.
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Therefore, only if this equation has a positive root for x4, a maximum or
minimum exists. For, this equation in general cannot be solved in a convenient
manner, since it will be

x4 =
m

4
3 − n

4
3

mn( 3
√

m + 3
√

n)
or x4 =

m− 3
√

m2n +
3
√

mn2 − n
mn

let us consider a special case and put m = 8n, and then it will be

−4095 + 24 · 513x4 − 3 · 63 · 64n2x8 + 9 · 512x12 = 0

or

512n3x12 − 1344n2x8 + 1368nx4 − 455 = 0;

put 8nx4 = z; it will be

z3 − 21z2 + 171z− 455 = 0,

which has the divisor z− 5, and the other factor will be zz− 16zz + 91 = 0
containing imaginary roots. Therefore, it will only be z = 8nx4 = 5 and hence

x = 4
√

5
8n , which value is a maximum or minimum point of the expression

4
√

1 + 8nx4 + 4
√

1− nx4. To find out which of both is the case, consider

ddy
dx2 =

3mxx

(1 + mx4)
7
4
− 3nxx

(1− nx4)
7
4

.

But, because of m = 8n, having put x4 = 5
8n , it will be

ddy
dx2 =

(
24n

6
7
4
− 3n

(3 : 8)
7
4

)
xx = −360nxx

6
7
4

and hence negative; therefore, 4
√

1 + 8nx4 + 4
√

1− nx4 will have a maximum

value for x = 4
√

5
8n . This maximum value will be = 4

√
6 + 4

√
3
8 = 3 4√6

2 . If

we write u instead of nx4, it is plain that this expression 4
√

1 + 8u + 4
√

1− u
has a maximum value for u = 5

8 and that this maximum value will be

= 3 4√6
2 = 2.347627. Therefore, whatever value except for 5

8 is written for u, the
expression will have a smaller value.
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§272 Maxima and minima will be determined the same way, even if tran-
scendental quantities are contained in the propounded expression. For, if the
propounded function was not multiform and one has not to consider several
values of it at the same time, the roots of the differential equation will show
maxima or minima, if those roots were not equal roots, whose total amount is
even. Therefore, we will demonstrate this investigation in several examples.

EXAMPLE 1

To find the number which has the smallest ratio to its logarithm.

A smallest ratio x
log x is obvious to exist, because this ratio becomes infinite so

for x = 1 as for x = ∞. Therefore, vice versa the fraction log x
x will take on a

maximum value somewhere; of course in the same case, in which x
log x has a

minimum value. To find this case put y = log x
x and it will be

dy
dx

=
1

xx
− log x

xx
.

Having put this equal to zero it will be log x = 1, and since we assume
the hyperbolic logarithm here, if e is put for the number whose hyperbolic
logarithm is = 1, it will be x = e. Therefore, because all logarithms have a
certain ratio to the hyperbolic ones, e

log e will also be a minimum point for

the common logarithm or log e
e will be a maximum value. Since, assuming

tabulated logarithms, log e = 0.4342944819, the fraction log x
x will always be

smaller than 4342944819
27182818284 or approximately 47

305 and no other number exists,
which has a smaller ratio to its logarithm than 305 to 47. That in this case log x

x

has a maximum value is obvious, since, because of dy
dx = 1−log x

xx ,

ddy
dx2 = − 1

x3 −
2(1− log x)

x3 = − 1
x3

since 1− log x = 0 and hence the differential is negative.

EXAMPLE 2

To find the number x that this power x1:x takes on a maximum value.

That a maximal value of this formula exists is obvious, because by substituting
numbers for x
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11:1 = 1.000000

21:2 = 1.414213

31:3 = 1.442250

11:4 = 1.414213.

Therefore, put x1:x = y and it will be

dy
dx

= x1:x
(

1
xx
− log x

xx

)
.

Having put this value equal to zero, it will be log x = 1 and x = e where
e = 2.718281828. And since dy

dx = (1− log x) x1:x

xx , it will be

ddy
dx2 = − x1:x

x3 + (1− log x)
d

dx
· x1:x

xx
= − x1:x

x3

because 1− log x = 0. Therefore, because ddy
dx2 is a negative quantity, x1:x has

a maximum value in the case x = e. But because e = 2.718281828, one finds
e

1
e = 1.444667861009764, which value is easily obtained from the series

e
1
e = 1 +

1
e
+

1
2e2 +

1
6e3 +

1
24e4 + etc.

This example is also solved using the result of the preceding example; for, if
x1:x takes on a maximum value, also its logarithm, which is log x

x , will have to
take on a maximum value; for this to happen, it has to be x = e, as we found.

EXAMPLE 3

To find the arc x that its sine has a maximum or minimum value.

Having put sin x = y, it will be dy
dx = cos x and hence cos x = 0, whence the

following values for x result: ±π
2 , ± 3π

2 , ± 5π
2 etc. But ddy

dx2 = − sin x. Therefore,
because these values, having substituted them for x, give either +1 or −1 for
sin x, the latter will be maximum, the first a minimum, as it is known.

EXAMPLE 4

To find the arc x such that the rectangle x sin x has the maximum value.
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That a maximum value exists is obvious, because having put either x = 0◦ or
180◦ the propounded rectangle vanishes. Therefore, let y = x sin x; it will be

dy
dx

= sin x + x cos x

and hence

tan x = −x.

Let x = 90◦+ u; it will be tan x = − cot u, therefore cot u = 90◦+ u. To resolve
the equation in the way explained above [§ 234], put z = 90◦ + u− cot u and
let f be the value of the arc u in question. Because dz = du + du

sin2 u
, it will be

p =
du
dz

=
sin2 u

1 + sin2 u
dp =

2du sin u cos u
(1 + sin u)2

and hence

dp
dz

= q =
2 sin3 u cos u
(1 + sin2 u)3

, dq =
6du sin2 u cos2 u− 2du sin4 u

(1 + sin2 u)3
− 12du sin4 u cos2 u

(1 + sin2 u)4
.

Therefore,

dq
dz

= r =
6 sin4 u cos2 u− 2 sin6 u

(1 + sin2 u)4
− 12 sin2 u6 cos2 u

(1 + sin2 u)5
=

6 sin4−14 sin u6 + 4 sin8 u
(1 + sin2 u)5

.

From these it will be

f = u− pz +
1
2

qzz− 1
6

rz3 + etc.

After by trying several values an approximate value of f was detected, put
u = 26◦15′; it will be 90◦ + u = 116◦15′ and the arc equal to the cotangent u
is defined this way. From
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log cot u = 10.3070250

subtract 4.6855749

5.6214501

Therefore cot u = 418263.7′′

or cot u = 116◦11′3 7
10
′′

hence z = 3′56 3
10
′′
= 256.3′′.

To find the value of the term pz perform this calculation:

log sin u = 9.6457058

log sin2 u = 9.2914116

1 + sin2 u = 1.19561

log(1 + sin2 u) = 0.0775895

log p = 9.2138221

log z = 2.2724637

log pz = 1.5872858

Therefore pz = 38.6621 seconds

or pz = 38′′39′′′43′′′′

from u = 26◦15′

it will be f = 26◦14′21′′20′′′17′′′′

and the arc in question x = 116◦14′21′′20′′′17′′′′

But the third term 1
2 qzz = sin3 u cos u

(1+sin2 u)3 zz has to added. To find its value, z must
be expressed in parts of the radius this way:
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log sin z = 2.3734637

add 4.6855749

7.0590386

add log
sin2 u

1 + sin2 u
z = 1.5872858

8.6463244

add log sin u = 9.6457058

log cos u = 9.9527308

8.2447600

subtract log(1 + sin2 u)2 = 0.1551790

log
1
2

qzz = 8.0895810

Therefore

1
2

qzz = 0.012291

or

1
2

qzz = 44′′′′15′′′′′.

Hence, having also used this term, the arc in question will be

x = 116◦14′21′′21′′′0′′′′;

but taking into account even more terms, one finds

x = 116◦14′21′′20′′′35′′′′47′′′′′.
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